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COMMENT 

Anisotropic bond percolation for some 2~ lattices 

Xian-Wei Zhang 
Department of Physics, Graduated School of Academia Sinica, PO Box 3908 Beijing, China 

Received 15 May 1984 

Abstract. The anisotropic bond percolation on the triangular, square and honeycomb 
lattices is studied uniformly. We use a longitudinal cell to discuss the triangular lattice 
and then from this we obtain the square and honeycomb lattices. The fixed points, the 
critical surfaces, the flow diagrams and the correlation exponents are given. The results 
are satisfactory. 

An anisotropic bond percolation is one of the extensions of the usual bond percolation 
model. Many authors have studied an anisotropic bond percolation on a square lattice 
by RSRG (see e.g. Chaves et a1 1979, Nakanishi er a1 1981, Oliveira 1982). They obtained 
the fixed points, flow diagrams and the critical exponents of both the correlation length 
and the dimensionality crossover. 

Guttmann and Whittington ( 1982) have proposed bond-site percolation on an 
anisotropic triangular lattice. They divided the bonds on the triangular lattice into 
two classes with the different occupation probabilities p, d and allowed the sites to be 
occupied independently with the probability s. The critical surface and the exponents 
v have been obtained. 

In contrast to the above, the pure bond percolation on an anisotropic triangular 
or honeycomb lattice has been studied far less. In this comment we discuss anisotropic 
bond percolation for some two-dimensional lattices. Firstly we study a triangular 
lattice then by a duality transformation we obtain the honeycomb problem. As a 
special case when the occupation probability of one class of bonds on the triangular 
lattice equals zero, the square lattice is obtained. Finally we have a chain limitation 
from the honeycomb lattice. For all these lattices, we obtain the fixed points, the 
critical surfaces or flow figures and the correlation length exponents. 

We consider a triangular lattice and divide all bonds into three classes on the 
different spatial orientations. These bonds are occupied independently with the prob- 
abilities p, q and r (figure 1). We choose a longitudinal cluster as an elementary cell 
( b  = 1) which consists of three bonds with different occupation probabilities and has 
the shape of a parallelogram. The b = 2 renormalised cell will have twelve bonds and 
the same shape as the elementary cell (figure 2). By using the deletion-contraction 
rule to evaluate the equivalent probability (de MagalhHes et al 1981, Tsallis and Levy 
198 11, we obtain the equation 

p '=pq +2pr+p2q +p2r  +2pqr2+pq2r-5p2qr-p2q2 

-2p2r2 +p3q - 2pqr3 - 4pq2r2 - 3p2qr2 - 3p3qr 

-p3r2 +2pq2r3 +4p2qr3 +4p2q2r2 -p2q3r +9p3qr2 
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+ 4 p 3 q 2 r  + p 3 r 3  - p 4 q r  - 2 p 4 q 2  - p 2 q 2 r 3  + 4 p 2 q 3 r  

- 4 p 3 q r 3  - 2 p 3 q 2 r 2  + p 3 q 3 r  + p 4 q r 2  + 3 p 4 q 2 r  + p 4 q 3  

- 2 p  q r - 2 p  q r - 7 p  q r - p 4 q r 3 - 7 p 4 q 2 r 2  

- 3 p 4 q 3 r  + p 5 q 2 r  + 3 p 3 q 3 r 3  + 4 p 4 q 2 r 3  + 7 p 4 q 3 r 2  

-2P 9 r - P  4 r 

2 3 3  3 2 3  3 3 2  

4 3 3  5 3 2  

= f ( P ,  9, r ) .  

Figure 1. A triangular lattice with the different occupied probabilities p ,  q and r on the 
different spacial orientations of bonds. 

Figure 2. ( a )  The b = I cell consists of three bonds with the occupied probabilities p ,  q 
and r. ( b )  The renormalised cell ( b  = 2) consists of twelve bonds. 

Then we choose the same cells on the other two directions of the triangular lattice. 
The equations are 

These are the renormalisation group equations. The fixed points given by the 
RG transformation are (1,  1, l ) ,  ( O , O , O ) ,  (0, 1, I ) ,  ( l , O ,  l ) ,  (1, 1,O) and 
( 0 . 3 3 6 8 , 0 . 3 3 6 8 , 0 . 3 3 6 8 ) .  The first two points are trivial and the next three are, in 
practice, the fixed points on the square lattice. The final fixed point ( I )  is an isotropic 
one on the anisotropic triangular lattice. 

The critical surface for the ( p ,  q, r )  parameter space is shown in figure 3 .  It is 
obtained numerically by following flows from some points. This surface divides the 
parameter space into the percolating region and the unpercolating one. Flows from 
points in the percolating region are into (1,  1, 1 )  and from points in the unpercolating 
into (0, 0,O). The shape the of critical surface is in agreement with the result from the 
exact critical condition but there are some numerical differences. 

The fixed point ( I )  is unstable on the diagonal which is from ( O , O ,  0) to ( I ,  1, 1 )  
and it is stable along the critical surface. This result is analogous with the square lattice. 
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T r  

Figure 3. The critical surface for the triangular lattice. 

The linear transformation matrix about ( I )  is 

with the maximum eigenvalue A ,  = 1.7410. The correlation length exponent is given by 

v = In b/ln A I = 1.25. 

These results agree with the exact values p c  = 0.3473 and v = 1.34 to within 3% and 

To obtain percolation on the anisotropic square lattice, we let q = 0 in the equation 
7% error. 

(1) and obtain 

The other equation given by the exchange p f;, r is 

These recursion relations give the trivial (stable) fixed points ( l , l ) ,  (0,O) and the 
isotropic fixed point (0.5249,0.5249). The exponent v = 1.42. The flow diagram of 
equations (4) and (5) is given in figure 4. 

We note that we can not let q = 0 in equations (1 )  and (3) simultaneously to obtain 
the recursion relations for the square lattice. This is because when q = 0 in both ( 1 )  
and (3) they represent a different shape of the cells to the square lattice. Clearly this 
is not correct. 

Next we make the duality transformation on equations ( l ) ,  (2) and (3). We shall 
get the renormalisation group equations for the honeycomb lattice. (To enable the effect 
of the duality transformation to be easily understood we use the present form of the 
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Figure 4. The flow diagram for the square lattice. 

Figure 5. The critical surface for the honeycomb lattice. 
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The fixed points are ( p * ,  q*, r * )  = ( O , O ,  0), (1, 1, l ) ,  (1,0,0), (0, 1,0), (O,O,  1 )  and 
(0.6632,0.6632,0.6632). The exponent v = 1.27. The critical surface is shown in figure 
5 .  The physical feature of figure 5 is analogous with the triangular lattice. 

When the occupied probability of one class of bonds is unity and the other class 
is zero on the honeycomb lattice we will reach the chain limitation. Therefore let q = 1, 
r = 0 in equation (6), we obtain p ’ =  p 2  and p *  = 1, Y = 1. 

In summary, we have discussed the anisotropic bond percolation for some two- 
dimensional lattices uniformly. On the whole, the level of agreement of the obtained 
results with the exact or previous results is satisfactory. 
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